
A\ 
~\ 
\ 

I 

; 

. .. 

- • 
• . • : 

•• 

CONTRACT REPORT NO. 291 

ENERGY APPROACHES TO STRUCTURAL VULNERAB ILITY 

WITH APPLICATION OF THE NEW BELL STRESS-STRAIN 

LAWS 

Prepared by 

J. G. Engi neeri ng Research Associates 
3831 Menlo 0 rive 
Baltimore, Maryland 21215 

March 1976 

I App .. ved for public "'ease; distribution unllm"'d. 

USA BALU 511 C RESEARCH lABORAI0R IES 
ABERDEEN PROVING GROUND, MARYLAND 



Destroy this report when it is no longer needed. 
Do not return it to the originator. 

Secondary distribution of this report by originating 
or sponsoring activity is prohibited. 

Additional copies of this report may be obtained 
from the National Technical Information Service, 
U.S. Department of Commerce, Springfield, Virginia 
22151. 

The findings in this report are not to be construed as 
an official Department of the Army position, unless 
so designated by other authorized documents. 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Dat8 Entered) . 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1. REPORT NUMBER r' GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 

BRL Contract Report No. 291 
4. TITLE (and Subtitle) 5. TYPE OF REPORT a PERIOD COVERED 

Energy Approaches to Structural Vulnera-
bility with Application of the New Bell Contract Report 
Stress - Strain Laws 6. PERFORMING ORG. REPORT NUMBER 

.---
7. AU THOR(.) 8. CONTRACT OR GRANT NUMBER(s) 

Joshua E. Greenspon DAAD05-7S-C-0731 

-
9. PERFORMING ORGANIZATION NAME AND AODRESS 10_ PROGRAM ELEMENT. PROJECT. TASK 

AREA a WORK UNIT NUMBERS 

J G ENGINEERING RESEARCH ASSOCIATES 
Baltimore, Maryland 21215 

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 

USA Ballistic Research Laboratories MA RCII 1976 
Aberdeen Proving Ground, Maryland 21005 13. NUMBER OF PAGES 

64 --
14. MONITORING AGENCY NAME a ADDRESS(/I dllferent from Controlllnil Office) 15_ SECURITY CLASS. (of this "'port) 

US Army Materiel Development & Readiness Command 
5001 Eisenhower Avenue UNCLASSIFIED 
Alexandria, VA 22333 1Sa. DECLASSI FICATION/ DOW·N GRADING-

SCHEDULE 

16. DISTRIBUTION STATEMENT (of thi. Report) 

Approved for public release; distribution unlimited. 

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 

18. SUPPLEMENTARY NOTES 

19. KEV WORDS (Continue on revetse;~ side if necessary and JdentJly by block number) 

Energy absorption Bell Stress-Strain Laws 
Plastic deformation 
Isodamage curves 

20. ABSTRACT (Continue on reverse side If necessary Bnd identify by block number) 

This report summarizes the various ways in which energy absorbed 
by a structure can be used in vulnerability studies. Three ap-
proaches are explained and mathematical relationships given for 
each. An extensive presentation is given of a simplified varia-
tional approach with applications shown for beams and plates. 
Finally the new Bell Stress-strain Laws are applied to compute 
energy and plastic deformati'on in beams and plates. 

DO FORM 
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOL.ETE 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (When Data E;;ter~r 



TABLE OF CONTENTS 

LIST OF ILLUSTRATIONS . 

I. INTRODUCTION. 

II. ENERGY THEORIES IN VULNERABILITY 

A. Energy approaches in general. 
B. Direct energy equalization 
C. Asymptotic approximation . 
D. The Variational approach 

III. MATHEMATICAL DETAILS OF THE ENERGY APPROACHES . 

A. Direct energy e~ualization 

1. General equations 
2. The experimental approach 
3. The theoretical approach. 
4. Checking the theory 

B. Asymptotic approximation • 

C. Variational approach to the blast problem 

Page 
5 

7 

8 

8 
8 
8 
9 

9 

9 

9 

· 10 
• 13-

• 13 

· 13 

· 14 

1. General equations . 14 
2. Form of the solution for a long shell. . 15 
3. Interpretation in terms of conventional P - I 

isodamage curves. • 16 

IV. VARIATIONAL SOLUTIONS FOR BEAMS AND PLATES. • 17 

A. General background. . 17 
B. Plastic deformation of cantilever beams . . 17 
C. Plastic deformation of uniform simply supported 

beams . 23 
D. Plastic deformation of uniform simply supported 

plates • • 24 

V. APPLICATIONS USING THE BELL STRESS - STRAIN LAWS ... 28 

A. General background ~ 28 
B. Application to one dimensional problems -

bending of beams. . 30 

1. Moment curvature relationship . 30 
2. Calculation of energy absorbed in elastic 

plastic deformation of beams. . 34 
3. Calculation of permanent sets under impulsive 

loading. • 36 

-3-



TABLE OF CONTENTS (cont) 

Page 
c. Applications to two dimensional problems - bending and 

stretching of plates. 41 

D. Bell's theory and the variational method 47 

E. possibilities for other applications of the Bell Theory 47 

APPENDIX I. COMPUTER PROGRAM FOR THE BEAM USING BELL"S 
LAW 

APPENDIX II. COMPUTER PROGRAM FOR THE PLATE USING 
BELL'S LAW • 

REFERENCES 

ACKNOWLEDGEMENTS 

DISTRIBUTION LIST • 

-4-

49 

53 

56 

58 

S9 



LIST OF ILLUSTRATIONS 

Figure 

1 Fragment Isodamage Curve with no Blast Effects 0 

2 Blast Isodamage Curve with no Fragment Effects 0 

3 P - I Diagram for Rigid - Plastic Model 

4 Conventional Isodamage Curve 0 

5. Permanent set in Cantilever Beams Under Impulsive 
Loading 0 

6 

7 

8 

9 

10 

Comentional Isodamage Curve for 6061 - T6 Aluminum 
Cantilever Beam (h = 0051", L = 12") 

Time at Which Maximum Deflection Occurs 

Time at Which Maximum Deflection Occurs (large values of 
p/f) 0 

Nondimensional Solution Curves for Plates under Large 
Plastic Deformation 0 

Moment - Curvature Relationships for Beams Made from 
6061 - T6 Aluminum 0

0 

11 Energy Absorbed in 6061-T6 Aluminum Simply supported 
Beams 

Page 

11 

12 

15 

16 

20 

22 

26 

27 

29 

33 

35 

12 Permanent set in Simply-Supported Beams 37 

13 Total Deflection in Simply Supported Beams 38 

14 Maximum Strain vs Maximum Deflection in the Simply 
Supported Beam 39 

15 Stress-Strain Curve for 6061-T6 Aluminum According 
to the Bell Theo.ry 40 

16 Energy Curve for Simply-supported Aluminum (6061-T6) 
Plates in Accordance with the Bell Theory 43 

17 Plastic Deflection Curves for Aluminum Plates 
According to the Bell Theory 0 44 

18 Octahedral Shear Strain vs Deflection Parameter 
(strain is near plate center) 45 

19 octahedral Shear Stress - octahedral Shear strain for 
6061-T6 in Accordance with the Bell Theory 46 

-5-





I. INTRODUCTION 

The complete history of the experimental development of solid 
mechanics in general and plasticity in particular is traced in 
the treatise of Professor James F. Bell,l* published in 1973. 
The practical developments in plasticity are rather recent, most 
of them occurring after 1920. The first complete books on plas­
ticity in English were published by Prager and Hodge 2 and Hil13 

as recently as the early 1950's and to the writer's knowledge, 
the first and only book devoted completely to dynamic plasticity 
was published by Cristescu4 only eight years ago. The field of 
dynamic plasticity is therefore relatively new compared to dynam­
ic elasticity which is several hundred years old. 

The vulnerability of structures depends upon how much deformation 
they can take and still remain serviceable. Vulnerability implies 
plastic deformation and failure. Therefore in order to handle the 
vulnerability problem a knowledge of plastic deformation of struc­
tures is a prerequisite. Most of the Army work in vulnerability 
has of necessity been empirical because the state of the art in 
plasticity theory has not kept up with the necessities of prac­
tical Army problems. The classical theories of plasticity devel­
oped over the past twenty or thirty years up to the early 1970.' s 
are difficult to apply and leave something to be desired in tpe 
way of accuracy in describing material behavior. A summary of the 
significant vulnerability-oriented calculations for simple struc­
tures is contained in a recent paper by westine and Baker. 5 It 
is only recently that Bel16 has developed a new experimentally 
based general theory that can be applied readily to general. large. 
deformation plasticity problems of the type contained in vulner­
ability studies. 

It is the purpose of this report to present the practical vulnera­
bility-oriented approaches using plasticity theory and then intro­
duce some calculations which are based upon Bell's new theory. 

*Superscripts refer to references listed at the· end of the report. 
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11_ ENERGY THEORIES IN VULNERABILITY 

A. Energy approaches in general 

The capacity of a structure to absorb energy can be a very useful 
concept in assessing its vulnerability. Three energy type approa­
ches that have led to fruitful results in vulnerability problems 
are the variational approach, the asymptotic approximation, and 
the direct energy equalization. All three use the plastic energy 
absorbed in the structure under a given configuration called the 
failure configuration or the mode of failure. This energy absorhed 
will be denoted by V, where V is a function of the geometry of the 
structure, its material properties and the deflection component 
in the direction of the load. These three approaches will be dis­
cussed in the order of increasing complication. The objective of 
all the approaches is to compute the final plastic deflection dis­
tribution of the structure as a function of an impulse, load or 
energy magnitude. Knowing this deflection we can then be in a 
position to judge whether or not this deformation will constitute 
a failure. 

B. Direct energy equalization
7 

In this approach the energy absorbed by the structure is equated 
to the energy directed toward the structure either from an explo­
sion or from a series of fragments. The main difficulty with 
this approach (once V is known for a given failure configuration) 
is the estimation of the energy given to the target by the explo­
sion or fragments. For blast, in several past reports8 ,9 the 
writer has taken this explosive energy to be the energy flux 
(energy per unit area) in the explosive wave multiplied by the pro­
jected area of the target facing the explosion. For fragments, 
assuming that perforation takes place, the energy absorbed by the 
structure is computed by subtracting the residual kinetic energy 
of the broken up fragments after perforation from the initial kinet­
ic energy of the approaching fragments. 

Since this estimation of blast energy does not include any inter­
action effects between target and blast wave it is therefore bound 
to be in error. Nevertheless it has led to a basic understanding 
of the role of energy in predicting the form of the isodamage cur­
ves. 7 ,9 At the present state of the art, we are at the stage where 
this approach can and should be considerably refined. 

c. Asymptotic approximation 

The asymptotic energy approach has been formulated by westine and 
BakerS in a very recent report and can be considered one step more 

-8-
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complicated than the direct energy equalization approach discussed 
above. They equate the energy absorbed in the structure to two 
separate characteristic energies of the loading in order to narr.ow 
down on the damage characteristics. The first of these character­
istic energies is the kinetic energy imparted to the structure £or 
short dUration impulsive loads. The second characteristic energy 
is the work performed by the peak load moving through the distance 
that the structure deforms. Thus two extremes or asymptotes for 
the energy imparted to the structure are calculated. One of these 
is in the very short time impulsive loading regime and one is in 
the long duration quasi static regime. In this way the damage 
characteristics are approached from both ends of the loading spec­
trum. 

D. The variational approach 

In the energy equalization approach no account was taken of the 
interaction of the blast load with the structure so loading dis­
tribution and timewise effects were neglected. In the asymptotic 
approach some account was taken of the load distribution but time­
wise effects were only considered in a limiting way. In the var­
iational approach both timewise effects and load distribution 
characteristics are included. The variational equations for a 
structure with a given failure configuration were derived in a 
previous report. lO For a given failure configuration the system 
reduces to a single equation for the lateral deflection Which is 
composed of an inertia term depending upon the mass distribution, 
a stiffness term depending upon the plastic plus elastic energy 
absorbed in the given configuration and a loading term which is 
dependent upon the pressure distribution over the structure. The 
equation, in general, is nonline~r in the deflection, therefore 
this approach, even though more accurate in principle than the 
ones described in sections Band C, can be considerably more com­
plicated if higher order terms in the deflection are involved. 
There are a number of practical cases, however, which only involve 
up to quadratic terms in the deflection and these will be discussed 
later in this report. 

III. MATHEMATICAL DETAILS OF THE ENERGY APPROACHES 

A. Direct energy equalization 

1. General equations 

The writer has proposed7 using the following energy equation 
for predicting the isodamage characteristics of structures: 

P I 
E = --------f 2 P c 

o 0 

where E f = 

-9-
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p = side on pressure in the blast impinging on 
the structure 

I = side on impulse in the blast impinging on the 
structure 

p = mass density of the ambient air 
0 

c - sound velocity in the ambient air 
0 

n = number of fragments hitting the target 

v = velocity of the fragments at the target 

M = mass of each fragment which hits the target 

A = effective area over which the damage takes place 

If we multiply equation [1] by A we obtain 

E 
total = 

Etotal = 

P I 
2 P c 

o 0 

A 

E blast 

+ 

+ 

2 
~ n V M 

E fragments 

[ 2] 

[3 ] 

The above relations state that the total energy absorbed by the struc­
ture undergoing a given level of damage is equal to tne blast energy 
plus the energy imparted by the fragments. The rationale and physical 
principles behind this relation are discussed thoroughly in the ear­
lier reference. 7 If there are vaporific effects, i.e. if the frag­
ments perforate the structure, hit an internal component or another 
piece of structure and produce internal pressure because of melting 
and vaporization, equation [2] still holds because it is tacitly 
assumed that all energy from the blast or fragments is absorbed by 
the structure and vaporific effects just represent a conversion of 
fragment kinetic energy into heat. 

2. The experimental approach 

Relation [2] can be applied in two ways. The first way is to use an 
experimental approach. A test must be performed on the structure to 
obtain one point on the damage curve, i.e. perform either a blast or 
fragment test to obtain a given level of damage on a structure. If a 
pure fragment test is performed, then the result can be plotted as a 
point on the V-M curve as shown in Figure 1. 
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Damage greater than test level 

Damage less than test level 

M 

E = 0 
B 

Fig. 1 Fragment Isodamage Curve with No Blast Effects 

with n fragments each of mass M hitting the target at.velocity V the 
energy imparted to the target will be 

E = ~. nMV2 [4] 

So the isodamage curve is described by the equation 

V = -V~ ~ M [ 5] 

This isodamag~ curve is shown as the curve in Figure 1 drawn through 
the experimental ·point. The value of E given by equation[41 is taken 
as the total energy necessary to do damage of the given level. If 
blast effects were present then we could describe the blast energy 
as PIA/1Poco . Then the fragment energy necessary to afflict 
the "same damage level"* would be 

E 
_ PI 

E f = A 
2p oCo 

[6] 

The isodamage curve for the fragments would then be described by 

V - I Ef - -V '":'"'~-n-M--- [7] 

* This has been put in quotes since fragment damage and blast damage 
do not always afflict the same type of damage. 
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Similarly if a blast test were run on the structure to do damage at 
a given level, this point could be plotted on a blast isodamage curve 
.as shown in Figure 2 below. 

Damage-greater than test level 

p 

E = 0 
frag 

Damage less than test level 

I 

Fig. 2 Blast Isodamage Curve with No Fragment Effects 

The energy for doing damage at the given level is given by 

E = P I 
2 C P 0 o 

A 

So the isodamage curve is given by the relation 

E 
P = 

A 
2 p. Co 

o 

[8 ] 

[ 9] 

This curve is shown as the solid line in Figure 2. Now if fragments 
were present their energy would be described by ~nMv2 and the blast 
energy necessary to do the same damage would be 

EB = E - ~ n MV2 [10] 

The new isodamage curve for blast would then be given by the relation 
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3. The theoretical approach 

I 

2p c 
o 0 

[ 11] 
A 

The second way to apply the basic equations is to calculate the 
total energy under a given failure pattern at a given damage level. 
Several earlier referencesS ,9 contain methods for computing blast 
damage, the most complete presentation b~ing given in Reference 9. 
Fragment damage and blast damage occurring after fragment damage 
is discussed in Reference 11. The energy necessary to do frag­
ment damage can be computed from the equation 

E = ~ n M v2 [121 
xn 

Eq. (121 is a perforation equation in which n is the num-
ber of fragments hitting the target, M is the fragment ;nass and 
Vxn is the ballistic limit velocity (i.e. the minimum velocity 
necessary to perforate the target - see Ref. 12). The energy nec­
essary to do a certain blast damage is given in Reference 9 for 
various patterns of failure. The pattern of failure must. be assum­
ed in advance. 

4. Checking the theory 

The formulas in the previous sections can be validated by using 
existing data on damage of structures. The way to achieve this 
is to construct the isodamage curve by using a single data point 
from an existing test and then checking to see if other points 
fall along the same curve. To check the theoretical approach of 
computing the energy absorbed, the energy can be computed by assum­
ing a given pattern of failUre, constructing the isodamage curve 
from this, and then checking experimentally to see if the pressure 
and impulse or velocity and mass values fall along this curve for 
equivalent damage. 

B. Asymptotic approximation 

As an alternative to solving the details of each problem, Westine and 
BakerS have developed a procedure using the absorbed plastic energy 
to compute the asymptotes for the impulsive and quasi-static regions. 
They determine these asymptotes by equating the internal plastic work 
(or strain energy) first to the kinetic energy imparted to the struc­
ture to get the asymptote for the impUlsive loading regime and then 
to the work performed by the peak force to get the asymptote for the 
quasi-static regime. Let V be the plastic energy absorbed (or inter­
nal work). This value of V is given for cy~indrical shells by eq. [S2] 
and Figs. 22-27 of the writer's 1970 report and

l1
0r lifting surfaces 

by eq.[44] - [46] and Table 2 of his 1971 report . Equating this energy 
absorbed,V,to the l<inetic energy imparted to the structure for the 
impulsive loading regime, thesimpulse per unit area, I, is given in terms 
of the energy by the relation . 
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I = [13J 

where f(A) is the impulse distribution on the structure and JJ.. 
is the mass per: unit area of the structure. 

In the quasi-static loading regime the work done by the peak load is 

W = I peA) weAl dA 
[14] 

Equating this to V we obtain forA the quasi-static region 

v W (15 ] 
(V is a function of the deflection w) 

where P(A) is the spatial load distribution and w is the lateral 
deflection. Some special cases for both axisymmetric and nonaxisym­
metric collapse of cylindrical shells were considered by the writer 
some years ago. 13 

C. variational approach to the blast problem 

1. General equations 

There is another approach to the damage problem which looks closer 
at the individual structure and follows the damage mechanism as it 
occurs. This approach can best be illustrated by an example. Con­
sider a shell subjected to an enveloping blast. By using varia­
tional principles as given in an earlier report lO the equation for 
the plastic radial deflection, w, o~<f cylindrical shell under. non­
axisymmetric loading can be written 

w = w (t) f (A) [ 16] 
n w 

where f (A) is the spatial distribution of deflectio~oover surface A and 
w (t), ~he timewise part of the deflection, satifies 

: (11 f2(A) dA + aV = j·P(A/t) f (A) c1A 
oJ' w cr;- w 

[17 ] 

o 
A A 

or written in more familiay- single degree of freedom notation 

where Wo 

m 
e 

:: 

m 
e x + R (x) = P (t) 

e e. [lB} 
has been replaced 

I'" 

J fJ- f~(A) dA = 
f (A) = 

w A 

by x and 

the generalized mass 

distribution of deflection w over sur­
face A [19] 

R (x) 
e 

:: 
av 
8w o 

= the resistance (elastic or plastic)- it 
can be approximated by a power series in x 
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·and-

where 

P (t) 
e = 

P(A,t) = Po(A)f(t) 

P (A) = spatial load distribution o 
f(t) = timewise load distribution 

jJ. = mass per unit area of stru·cture 

2. Form of the solution for a long shell (see Ref. 10) 

For a perfectly piastic material in which all < < 1, wola < < 1 
(a = shell radius, L = shell length!- Wo = deflection) 

Ov = as h L J f w (A) dA 
0;- --J-' 

o A 

[ 20] 

[ 21] 

[ 22] 

where h = shell thickness, OS = yield stress in pure tension. If 
we further limit the discussion to exponential timewise loading 
(Le. P(A,t)=P(A)f·(t)=P f (A)e-t/T - _ ), then the equation of mo­
tion [18] takes the sam~ Pform as eq . [1] of the paper by Westine 
and Baker,S i.e. tiT .. 

P e f = m x [23] 
where 

f P = P (A) f (A) dA = 
0 w 

f (A) f (A) dA 
p w (24] 

A 

f (Jh 2 f fw(A) dA = IF s 

A f (A)=spatial load distribution 

m p = J fJ- f~ (A) dA 

A A 
S 

~he solution curve is exactly· the one shown by westine and Baker as 
Figure 2 of their paper with the above parameters which depend upon 
the deformed shape, fw(A) , the spatial load distribution, fp(A) 
and the other physical cnaracteristics of the shell. This curve·is 
shown in Fig. 3 

100~~--------------------------~~ 

p/f 

.10 

1 "'-__ --..a.~u.u..._..L-.J... W...uJJC:::::t::::t::::!:::bI.LW 
1 10 

1
2/xmf 

100 1000 

Fig. 3 P - 1 Diagram for Rigid - Plastic ModelS 
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In this curve 

I 

CD 

f P e- tiT dt = - tiT dt ff (A) f (A) dA e p w 
A a 

x = maximum deflection (i.e. (wo)max.) 

3. Interpretation in terms of conventional P-I isodamage curves 

An interpretation of this scaled P-I curve as it relates to damage 
problems is certainly in order here. This curve (fig. 3) really 
gives the solution to the plastic problem in nondimensional form. 
For a given set of values of P, f, I, m we can obtain the value of 
r 2/Xmf resulting from a certain value of plf and then calculate the 
value of the maximum deflection, X, from this result. The conven­
tional isodamage curve is a plot of pressure vs. impulse as shown 
in Figure 4. 

Pressure 

P 
o 

\ 
\ 

i 

-', Damage greater than X 
"-. 
'~ ,., 

-~­.----.. . ~--
Damage less than X 

.... -... __ ._--
~ ... -.. ,---.. 

Impulse I 
o = 

co 
f 

a 

p 
o 

e- tiT dt = P T 

Fig. 4 Conventional Isodamage Curve 

The conventional curve of Figure 4 is obtained from the nondimen­
sional solution curve of Figure 3 as follows: 

a. Choose values of pit from Fig. 3 and calculate Po from the 
relations 
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p = f (p /f) and P 
o = P 

[f (A) 
A P 

f (A) dA 
w 

[26) 

b. pick off values of I 2/Xmf from Fig. 3 corresponding to the partic­
ular values of P/f selected inOla' above. compute I fI.'(I)m the relation 

r2 _ 
X m f = . Value obtained from curve = I 

Assume X for a given damage level, thus 2 
I X m f = I 

12 [ f dA ) 2 - X m f f {A} f (A) = I 
0 P w 

A 

therefore Ji 
I 

X m f = 
0 f f (A) f (A) dA 

A p w 

[27) 

(28] 

Note that the conventional isodamage curve calculated in this way 
(as contrasted with that shown in Section IlIA) will not have Zero 
asymptotes, i.e. it will give infinite pressure for some finite value 
of impulse instead of infinite pressure for zero impulse-. Likewise it 
will give infinite impulse for some finite value of pressure instead 
of infinite impulse for zero pressure. This is therefore a more accu­
rate way to obtain the isodamage curve for blast on a given structure 
if the load distribution is known. 

IV. VARIATIONAL SOLUTIONS FOR BEAMS AND PLATES 

A. General background 

The general form of the variational equation is given by equation 
[18]. If the resistance function, Re is a constant then the equa­
tion takes the same form as the simple westine-BakerS equation 
(i. e .. eq. [23]). For these cases the curve of westine and Baker 
(i.e. Fig .. 3) can be used as a nondimensiona1 isodamage curve as 
long as the proper interpretation is given to each of the terms. 

B. Plastic def6rmation of cantilever beams 

We stine and BakerS have computed the plastic strain energy of a 
cantilever beam. This energy, V, is 

v 
16 L 

-17-
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where ay= yield stress 

m 
e 

P/f 

2 
1 

b width of beam 

h = thickness of beam 

L = length of beam 

w = maximum tip deflection 
0 

Using a deflection shape of w = w ( 1 cos 1Tx 
0 

The resistance function, Re for this 

Ov 
Re = -aw = f 

case 

= 

2 L [30] 

-turns out to be 

7Ta bh
2 

y [ 31] 

The generalized mass, me 0 is 
16 L 

For 
is 

Thus 

= 

and 

b 1 - cos 

A 0 = .23 b h 

1Tx 

2 L 
L 

)2 dx [32] 

a uniformly distributed loaa the generalized loading function 

P = P f f (A) f (A) dA f (A) = 1 
'0 P w P [33] 

A P = P (.36bL) 
0 

P (.36 b L 16 L 
0 

1T cry b h
2 

16 L2 ( . 36) P = 0 

CT Trh2 
y 

2 [34] 
P L 

(1. 83) = 0 
-2 

(J h 
Y 

[ 35] 

2 2 = 1 
== X mf 

X (.23 bp h L) rrCJ. b h 2 0 L (2.88) 

So the 
of 

curve of P/f vs. 

P L 
2 

o 
~ 

1.83 

ph w 
0 ( Y 

16 L 
1 2/xmf converts 

CJ y 

for a cantilever 

vs 
12 L2 

2_88 __ ~o _______ ~ 

P he:. 
h Wo cry 

~ 

to a curve 

cantilevers made from 6061-T6 aluminum which were 12 inches long 
and .051 inches thick were tested at BRL.14 For this material 

cry = 40,000 psi, P = .000255 lb. sec. 2/in. 4 . The 
asymptotes of the isodamage curve are calculated directly as 
follows: 
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For the impulsive loading regime 12 / X m f = 2.0 

so 2 L2 
2.88 

I 2.0 0 = [ 36] 
h

2 
P h w O'y 0 

therefore w I 
) 2 ..-k... 0 0 1.44 :; P O"y 

= L h h 

For the quasi-static loading regime p / f = 1 
0 

[ 37] 
so p h

2 
p 2 or 0 = .54 

1. 83 0 ~ = 1 (j L2 
(j h Y 

Y 
The value for the quasi-static regime checks with the westine­
Baker valueS since they take account of the deflection distribution 
in their calculation of the quasi-static asymptote. The value cal­
culated for the impulsive regime does not check since they omitted 
the effect of deflection distribution on the Kinetic energy. If 
the energy principle is derived from the variational equation, it 
is found thatlS xm 

[ 
P e (t) dx 

where 

p (t) 
e = [ 

o 
P (A, t) f (A) dA 

w 

= 

o 

R (x) 
e 

[38] 

[ 39] 

= 
A 

und~r t~e~5 circumstances the result for the impulsive loading 
reg~on ~s 

where 

H2 
= me 

[ 40] 2" m 
e 

Wp = strain energy absorbed by the structure (inter­
e 

nal work done by the structure) 

H 
me 

m 
e 

= 

= 

J 
f 

A 

T 

P (t) dt 
e 

fJ. f~ (A) dA 
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b h
2 2 

b Tray w I 
Under these circumstances 

0 
.56 

0 
= 16 L 2 P 

so w I [ 42] 
0 ) 2 L 0 = 1.42 

h VP O"y 
L h 

As is shown in Figure 5 this correction gives results which fit 
the data somewhat better than the westine-Baker curve at lower 
permanent sets. 
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The nondimensional isodamage curve for the cantilever is then found 

by replacing the ordinate and abscissa of Figure 3 by 

P L2 
2 

2 
1.83 and 2.88 

I 
respectively 0 0 4 

(Jy 7 ph w (jy h 
0 

The conventional isodamage curve for this cantilever is shown in 
Fig. 6. 
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There are several basic principles which can be learned from this 
example. Firstly, the isodamage asymptote for pressure is a con­
stant for the perfectly plastic beam, i.e. it is independent of 
the level of damage. Secondly, the asymptote for impulse is de­
pendent upon the damage. The pressure asymptote really defines a 
collapse pressure for the beam under static loading. 

C. Plastic deformation of uniform simply supported beams 

For the case of a perfectly plastic simply sup~orted 
tangular section the strain energy is given by 

where 

Thus 

M 
Y 

= 

f 

4 

8 M w 
Y 0 v = 

L 
yield moment 

b = width of beam 

h = thickness of beam 

L 

= 

= length of beam 

R 
e = aV 8 M 
~ = ---2 

o L 
The generalized mass is (using a deflection shape of 

beam of rec-. 

[431 

[44) 

[45] 

L 

f fJ. f~ (A) dA = b f ph . 21Tx 
dx 

. 1Tx 
w = w s~n---

o L m 
e = 

A = .5 P h b L 0 
For a uniformly distributed load the generalized force is 

P = P 
a f 

A 

f (A) f (A) dA 
p . w 

So P = 

So for this case 

Pjf 
P (.64 b L} P 

= a = a 
8 O":t: b h

2 
O"y 

L 
4 

I2j X m f 
I2 

= 0 
(.64 b L)2 

w (.5 b L Ph) 8 
0 

( 

f (A) 
p 

.64 b L P 
o 

L2 
( .32) 

h
2 

(jy b h
2 

) 
4 L 

= 1 

= 

s~n 
L 

l4b J 

[471 

[ 48~ 

So the curve of Pjf vs I2j X m f converts' for °a simply 
supported beam to a curve of P L2 

.32 0 
I2 L2 

vs .41 0 

a h
2 

y ph Woay h2 
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m 

.41 

The asymptote for the impulsive loading region is 

2 L2 r2 L I 2 So w 0 2 
o = 0 = .2 ( h ) [49] 

P h w 0 U Y h 2 L -V p cry h 

In the paper by westine and BakerS their 2 it = L so that the 
above value comes very close to their value. The slight difference 
is probably due to the fact that the shape was considered here in 
computing the kinetic energy. The asymptote for the quasi-static 
regime is given by 

2 P (h/L) 2 P L 3 [ 501 .32 0 = 1 'or 0 = 
(J"y h

2 (J"y 

which is exactly the value given by westine and Baker. 
5 

D. plastic deformation of uniform simply supported plates 

v 

= 

= 

For the case of simply supported plates- westine and BakerS find 
that the strain energy is given by (assuming a perfectly plastic 
material and plate dimensions of a, b, h - width, length,thickness 
respecti.vely) _ 

U h
2 

w (£ + 
y 0 a 

~) + 4 cr h 2 
w 

b J3 y 0 [51] 

The terms linear 
in Wo arise from 

Let w be given by 

+ rr2 h w2 (£ + a + 4 h w2 
cry 0 a b .j3 (jy 0 

in w0
8 represent bending terms and those quadratic 

tension in the middle surface of the plate. 

w = w 
o 

sin 
TTx 
a 

sin 
TT y 

b [52] 

The terms in the variational 
a b 

equation are then 

b 

m 
e 

p 

= J f 
o 0 

= p = p 
e 0 

a b 

f f 
o 0 

, 2 
s~n 

sin 

1Tx 
a 

x 
a 

, 2 
s~n 

sin 

1Ty 
b 

dx dy 

--...... y dx dy 
b = 

D h a 
I 

4 

[53] 

4 
a b 

p 
0 1T

z 

The variational equation becomes 

m w 
e 0 

+ 
Ov 
Ow = 

o 
P f (t) 

e so 

m Wo + fl Wo + f 

r54] 

= P f (t) 

Again using the typical exponentially decaying pulse 

f(t) = e-
t/T 

We obtain 
= 

-24-
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[ 561 
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fl 
rr2 

h ( 
b a 8 

h = CYy + + J3 CYy where 4 
a b 

h
2 (E ~) 4 

h
2 

[ 571 
f = CY + + 13 CYy y a b 

This is a linear differential equation, the solution of which is 
as follows: 

The initial conditions are 

= 
Thus 

w (t) 
1 = 

0 m PI 

Integrating, 

w (t) 
o = 

t 
?iT f -P e 

0 
we obtain 

sin 

w (0) = W (0) = 0 
o 0 

sin PI (t - T ) dT 

f 
m P l 

plT cos plt + 

2 
1 + (PlT) 

t f sin 

[581 

[ 59] 

P l (t - T)dT 

[ 60] 

fl ( 1 - cos Plt ) 
2 

m P l 

The maximum deflection, X is determined from the criterion that 

i.e. when 

P 
f 

. 
Wo = 0 when Wo = (wo)max ( = X) 

cos + 
-tiT 

e [ 611 

= o 

The lowest value of tiT which satisfies this equation gives the 
time at which the maximum deflection will occur. If we let a=PIT 
then 
P Q. 

f 

the above equation becomes 
cos a tiT + a.. sin Q. tL:T e -tiT 

2 [62] I + a. 
sin Q. tiT = 0 

where 

a = PIT = T -Vfl/m 
[ 631 

The minimum values of tiT whic'h satisfy this equation are plotted 
as a function of p/f for various- a in Figs. 7,8. The deflection 
can then be written as 

= sin a tiT a cos a tiT 

I + a 2 

-25-
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P a 
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+ 
-tiT 

a e ) [64] 

( 1 cos a. tiT ) 
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In order to compare the results with the Westine-Baker results 
(for a = 0) we plot P/f as ordinate and I 2/xmf 
as abscissa. The resulting curves are shown in Figure 9a for 
various values of a . Note that for a) 0 5 
there is no vertical asymptote as found by westine and Baker for 

a = 0 The horizontal asymptote for nondimensional 
pressure remains the same for all a. Figure 9b contains the 
same solution curves plotted with a different abcissa. This figure 
illustrates how increasing a increases the stiffness of the plate. 
The ?arameter a is a measure of the tension in the middle surface 
of the plate; The solution curves are general and can be applied to 
any system in which the energy can be expressed as a quadratic function t 

of the deflection. 

v. APPLICATIONS USING THE BELL STRESS-STRAIN LAWS 

A. General background 

For about a decade Professor James F. Bell of the Johns Hopkins 
university has been developing techniques and producing extensive 
experimental stress-strain data on many materials under uniaxial 
loading for both the static case and the dynamic case involving 
high rates of strain. Recently he has also made extensive studies 
on biaxial loading in the static regime. Most of Bell's work 1 6 
which is applicable here is contained in two recent references. ' 
He has developed both deformation and flow laws for alloys 
under uniaxial, shear, and biaxial loading. In the present report 
the writer will illustrate the application of Bell's Laws to both 
one and two dimensional cases of structures under impulse loading. 

The one dimensional tension-compression stress-strain law given by 
Bel16 for plastic deformation is 

In the 

0"= EE if E < Ey 

a= ay + CVE - Ey if Ey ~ E 

a= ojE -Ec + EN if E > Ec 
~N 

above equations 

a = tensile or compressive stress 

E = tensile or compressive strain 

E ~ elastic modulus 

O"y = yield stress 

Ey = yield strain 

Ec = critical strain 

C = A3/ 2 m3/ 2 g N .... s· 
EN, AN= parameters given 

6 
(given by Bell ) 

6 
given by Bell ) 

by Bell 
6 
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Each of the parameters given by Bel1
6 

is associated with a partic­
ular physical ~henomena of the material as explained in Bell's 
previous work. There is an analogous one dimensional shear law 
which follows the same form as the one dimensional tension-compres­
sion relation. 

6 
For biaxial stress Bell gives as the deformation law 

where 

T 

T 
T 

= E r 
= 

= 

if f 

-where C = 

2 
O"x O"y + 37Xy 

< 
if 

if 

A~/2 
N 

fy 

ry < r " 
r ) rc 
-3/2 
K 

[ 661 

[671 
= octahedral shear stress 

= octahedral shear strain 

All. ~he parameters involved in the above equations are given by 
Bell and explained thoroughly in his treatise l and his many earlier 
papers. 

B. Application to one dimensional problems-bending of beams 

1. Moment curvature relationship 

In the classical theory· of elasticity the bending moment, M, 
in a beam is given in terms of the curvature, K of the beam 
center line by the relation 

M = E I K [68] 

where E is the modulus of elasticity of the beam material and 
I is the area moment of inertia around the neutral axis. This 
relation is derived from the basic assumption that plane sec­
tions remain olane after deformation, i.e. that the strain is 
given by16 a2 

E w2 
x = z K = z ax [ 691 

where Z is the distance from the center line to any fiber 
within the depth of the beam. Thus the bending moment is 
given by r 

M = b(x,z) (J' z dz 
JA x [701 

where b(x,z) is the width of the beam (which could be a func­
tion of the depth (z) and the longitudinal dimension (x). For 

-30-



a rectangular beam of 

M = 
but 

(J = x 
Thus 

4 3-%7 M = E B H w 3 x 

constant section (width 2B and depth 2H) 

2 B (+H (J z dz 
J-H x 2 

E E = E z a w2 x ax 
= where I = 4 

3 

[711 

[721 

3 [731 
B H 

In the ~heory of perfectly plastic solids
16

the perfectly plastic 
moment, Mo ' is defined as the bending moment obtained when the 
cross section of the bigm is entirely in the plastic region, thus 
for a rectangular beam H 

M o 

o 

a z dz y = 2 B a y 
2 

H 

[741 

where (Jo is the yield stress of the material in pure tension: 
The moment curvature relation for an elastic-perfectly plastic solid 
rectangular beam will then be as shown in Figure 10. 

If the Bell theory is employed then we 
the three regions enu~erated by Bell. 6 

must concern ourselves with 
For a rectangular beam it 

is found that a2w 

by letting K = . a x% 

a. For E < Ey H 

M = 4 B J 2 
z E K dz 

So 

o 

dz 
+ 

So 

= 
1 (it) 2 1 

4 [ 
3 + 2 

M 

+ 

-31-

and 

M 

B H2 (J 

H 

J 
~ 
K 

E= KH, the strain at. the 
outer fiber z=H 

4 
= ·3 

Y .. 

[751 

z [ (J + C ( Kz - €Y)~ld1 y 

( 1 - (~) 2 ) 

2 C ( 2 E + 3 E ) ( E - E )3/2 

Y :x: 
15 E2(J 

y 



c. For E > Ec: ~ 

4B { 

K 

f 2 
dz M = (jy' z 

--.S: 0 

+ 
!,: 

z [(j + C ( K z - E ) 2] dz 
y y 

K 
H 

dz } f - !,: ., 
+ z C ( Kz - E ) 2 

C 

Ec 
K 

{ 
2 2 

M 1 6 1 Ec ty 
= 4 (T) 2 + 

B H2 (j 
3 2 E2 

y 

2 C ( 2 t + 3 E ) ( E - Ey 
)3/2 

Y.. c .c 
+ 

E 2a-15 
y 

2 C ( 2 E + 3 E ( E - E )3/2 
+ c c 

15 E 2(J 
Y 

3 E E -
c ) 3/2 } 2 C (2 E + - E c c c 

15 E 2a 
y 

where -
E c = Ec 
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I 

The moment curvature relation as predicted by the elastic-perfectly 
plastic theory is compared to that predicted by the Bell theory for 
6061-T6 aluminum in Figure 10. Note the smooth transition predicted 
by the Bell theory from the elastic through the elastic-plastic re­
gions and finally into the completely plastic regime. 

2. Calculation of energy absorbed in elastic-plastic deformation of beams 

The elastic energy absorbed 
be written asS 

in the 
L 

bending deformation of beams can 

U = e [ 

M2 

o 2 E I 
dx [ 761 

where M is the elastic moment, E the elastic modulus, I the moment 
of inertia and L the beam length. For a rigid plastic material the 

plastic energy absorbed can be w::tte:
5 

J:L 
M a2

w2 dx 
°dx 

[ 771 

For an elastic-plastic 
the energy absorbed is 

material such 
given by17 

as dealt 

Em 
with in the Bell Law 

but 

so L 

U = I, f 0" dE ] 
o 

dV 

E = z K dE == z dK 

* 
[781 

[791 

U = J dx 

(zK) H L (zK) 

J d:

ax 

4 B J (J z dz = J dx J M~: dK {8 01 

0 0 
f °d 0 0 0 0 . 

I we cons~ er the case of a s~mply supported beam (~.e. one where 
the bending moment and deflection are both zero at the ends of the 
beam) and assume a deflection pattern as follows: 

w = w 
o 

16 x 3 2 3 
(L - 2 L x + x 

L4 S 
[811 

( this corresponds to the deflection pattern under a uniform load) 
then the energy can be computed as a function of wolL (wo being the 
maximum center deflection of the beam and L being the length of the 
beam) . 

Figure 11 gives the results of this energy calculation. A sixteen 
point Gauss Quadrature was used to calculate both integrals shown in 
eq. [80]. The computer program that was used to make these computa­
tions is shown in Appendix I of this re~ort. Note that for small 
elastic deformations U varies as (wo/L) whereas for the larger 
wolL it varies linearly with wo/L. This has very interesting and 
simplifying consequences in the variational equation as shown in 
Section IVB. The results obtained by westine and Baker5 for the 
rigid - perfectly plastic material are also shown in Figure 11. 

-Ie 
where V denotes an integral over volume and 
maximum strain 
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3. Calculation of permanent sets under impulsive loading 

The total deflection(not the permanent set) of the beam under an 
impulsive load can be computed by the relation given in Section IV, 
i.e. 

= 
2 m 

e 

where H = 
m 

e 

m = e 

= 

o J
T 

p (t) dt 
e 

f Ii- f~(A) dA 

A 

(the generalized impulse) 

[821 

(the generalized mass) 

U = energy absorbed a function of w IL ) 
o 

The program given in Appendix I is used to perform this computation. 
The results for the simply supported beam using the Bell Theory to 
compute the energy absorption are shown in Figure 12. The perma­
nent set for a given impulse is computed as follows: 

a. For a given value of impulse in Figure 13 pick off the value 
of wolL (this corresponds to the total deflection) 

b. Compute the maximum strain in the center of the beam as a func­
tion of the center deflection(this curve is plotted in Fig. 14). 
At a given (wo/L) center there is a corresponding value of (Em) 
center. 

c. Go into the stress-strain curve of Figure 15 with this value of 
(EM) center and draw a line parallel to the elastic line at this 
strain. This corresponds to the unloading path from the maximum 
strain. Where the line hits the horizontal axis corresponds to 
the permanent strain. 

d. Gb back to the WolL - € curve and obtain a corresponding value 
of WolL for this permanent strain. This will correspond to the 
permanent set (or permanent deflection) . 

e. plot the impulse parameter originally chosen vs. this permanent 
set parameter as shown in Fig. 12. 

. . b' d f . f 5,18 h ExperLmental pOLnts 0 taLne rom prevLous re erences are sown 
on this plot. Indications are that this theory gives good results. 
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c. Applications to two dimensional'proqlems - bending and stretching 
of plates 

Problems concerning the plastic deformation of plates involve biax­
ial stress fields and are therefore an order of magnitude more com­
plicated to solve than one dimensional problems, aowever the employ-
ment of the Bell Theory readily enables solutions to be developed. 
The strain energy for a plate in a biaxial state of stress can be 
wtitten17 r 

(rdf u = f ] dV 
[83 ) 

v 0 

:where V denotes an integral over volume 
where 

T = .-If y ~ + (J~ .., (j'X(Jy'" 3Tly = octahedral shear stress 

r = J2J €~+ ~ +€X€y + yfr = octahedral shear strain [84] 
4 

. rm = maximum value of r . 
(JX ay ixy = stress· components I EX 6t Yxy = strain components 

For·a plate whose width, length am thickness are a, b 2H respective-

ly the .strain en;r
gy

= beCje/ dx Jb dy _Hf+H dzfT df: [851 

Now introducing the Bell Law for biaxial stress, we have 

T = Er for 

= Ty + c'Vr 

= c-Jr f 'c 

r < r y 

r y for r' ~ r~ 
y 

for 

r 
c c 

fc = 

= 

[ 86) 

>..3/2 -3/2 
N K ~s 

For large lateral deformations of plates the strains can be written 
in terms of the lateral deflection, w,' as follows: 

'l""Bw ,,2 ~." 
= 2'(07" z-o? 
=;g; ')2 z~;z Yxy = 

introduce a deflection function f(x,y) such that 

w = w f(x,y) 
o 

-41.,.. 

[ 871 

a2
w 

2 z ax ay 
[ 881 



U 

x 

where f(x,Y) isa nondimensional distribution function. Also non­
dimensionalize the other parameters as follows: 

= x/a , Y = y/b z = z/H r = f/ r [891 
m 

So that 2the strains become 

E"x :: 1.. 
w 

( Of 2 z w a2
f 0 0 

-Ox ) -- a -2 
YXy = Wo w af 0 ( ax 2 2 a a 

a2 x 

Ey = 1:. w af ) 2 
w (32f 0 ( ay - z 0 

2 b
2 a b a -2 

Y 
The strain energy Ibecomes

f
l f+l 

= a b H E [ J dX dy 

o 0 -1 

a 

dz f
l 

o 

b 

2 z Wo 

a b 

T rm
df )[911 

af 
8y 

( 90] 

Now assume that the edges of the plate 
the deflection function be given asS 

are simply sUJported and let 

b 
f(x,y) = 1 

4' + cos [ 

a 
Tr( x - 2 

+ 2") ) cos [---b-":;;;- ] [92] 
Tr(y -

or in terms of X, y 

a 
2 2 

= 1 
4 

(1 + cos 7T ( 2 x - 1 ) ) (1 + cos 1T (2 Y - 1 ) ) [93] 

The program for computing the energy integral is contained in Appen­
dix 2. A plot of the strain energy as a function of the deflection 
resulting from calculations using the program is shown in Figure 16. 
Assuming impulsive loading and equating the kinetic energy to the 
strain energy (no corrections are made for the shape function as 
done for the beam since the correction is small for the simply 
supported case) we can then obtain a relationship between the non­
dimensional impulse function and the nondimensional deflection. 
This curve is shown in Fig. 17. Using an analogous procedure for 
obtaining permanent set as was used for beams we go through the 
following steps: 

a. Plot a curve of nondimensional impulse vs. nondimensional total 
defle€tion. such as shown in Fig. 17 

b. plot a curve of octahedral shear strain, 
deflection wo/h such as shown in Fig. 18. 
wo/h from a,we have. a value for r 

r vs. nondimensional 
For the given value of 

c. Go into the stress-strain curve ( T - r 
and obtain the permanent strain by drawing a 
elastic line"at the strain which corresponds 
value of wo/h. 

in Figure 19 
line parallel to the 
to the appropriate 

d. Go back to Figure 18 to obtain the permanent set value of wo/h 
and plot on Figure 17. 
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Both the nondimensional impulse - deflection values for total de­
flection and permanent set are shown in Figure 17 with corresponding 
experimental results obtained from the literature?' 19 The indications 
are that the theory is quite satisfactory in predicting plastic de­
flections. 

D. Bell's theory and the variational method 

Once the energy function is computed, a polynomial fit can be made 
between energy and deflection. For example, in the case of a simply 
supported plate shown in Fig. 16 the energy takes the form 

v w 
A ( __ 0_ 

h 
[94] = + B ( 

a b H E 

where A = .0009 B = .0008 

These coefficients are somewhat less than those computed from 5he 
rigid-perfectly plastic theory presented by Westine and Baker. In 
any event if a second order polynomial will fit the energy function 
then all the theory developed in section IV C can be applied to the 
problem up to the point of predicting the complete isodamage curve. 

A practical way to apply the Bell Theory to dynamic problems in 
plates and shells is first to compute the energy, fit a polynomial 
in the deflection to this energy function and then apply the varia­
tional theory outlined in the earlier sections of this report. 

E. possibilities for other applications of the Bell theory 

The problems presented in this section are only a small example of 
the application of Bell's theory to dynamic vulnerability type pro­
blems. There are many unsolved vulnerability problems to which the 
new Bell laws could be applied to shed light on their solution. One 
very important problem is the penetration and perforation of struc­
tures by projectiles. These perforation problems have only been 
investigated either empirically or analytically using questionable 
stress-strain laws. Another problem of great interest is the dy­
namic behavior of shells. The solution of this problem should be. 
merely an extension of the analysis presented for plates in this 
report. 
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APPENDIX I. COMPUTER PROGRAM FOR THE BEAM USING BELL'S LAW 

A listing of the beam probram in "BASIC" is given in Table 1. The 
input parameters are shown in statements 10 - 45, 100 - 210 with 
their corresponding values given in the DATA statements 480 - 600. 
The input parameters in the program are given below with the sym­
bols that they represent. 

\3k_3hfJ C = I\N m S = 85000 psi 

El = €c - .~ = -.285 

Y = €y N = .004 

S = (jy = 40000 psi 

E2 = €c = .01 

E = elastic modulus = 107 psi 
-

M = number of integration points for the X integral = 16 

N = number of integration points for the K integral = 16 

H = h/2L = one half the thickness of the beam divided by 
its length = .0069 

Wl, W2, W3 = minimum, maximum, increment in w where 

W = WolL in which Wo is the maximum deflection and 

IJ is the beam length 
Gl, G2, G3 = minimum, .maximurn, increment in G,where G is the 

strain value used to compute the stress-strain 
curve in statements 55-97. 

X(I),G(I) are the Gauss locations and weights respectively 
for the x integration (locations are in state­
ments 530 - 540, weights in statements 550-560) 

Y(J), H(J) are Gauss ·locations and weights respectively for 
the K integration (locations are in statements 
570~580, weights in 590-600) 

U is' the nondimensional energy function v/BH2 (Jy as shown in 
'the graph of Fig. 11 
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5 
10 
20 
30 
40 
45 
50 
55 
60 
65 
70 
72 
15 
30 
90 
95 
97 
100 
110 
120 
130 
140 
150 
160 
170 
130 
190 
200 
210 
215 
220 
230 
240 
250 
260 
210 
230 
290 
300 
310 
320 
330 
340 
350 
360 
310 
3ao 
390 
400 
410 
420 
430 
435 
440 
460 
470 

Table 1. Listing of Beam Program 

DIM X(20),G(20),r(20),H(20) 
READ C,El,Y,S,E2,E 
READ ~1I'~ 
READ a 
READ \r;1,\V2,\W3 
READ Gl, G2, C3 
LEI Q= 0 
FOR G=Gl TO G2 STE~ G3 
IF C> '( T:-tEN 72 
LEI 55=E*C 
GOI0 95 
IF G>E2 liiEN 90 
LEl S5=5+C*SQhCG-t) 
COIl") 95 
LE.I 5S=C*SQf,(G-El) 
GOlv 97 
NEXT C 

FOR 1= 0 10 M- 1 
hEAD XC I ) 
NEXT I 
FOR I= 0 10 r·j- 1 
READ C( n 

FOR J= 0 10 N- 1 
READ tc J) 
NEXT J 
FOR Ja 0 TO N­
hEAD aCJ) 
NEXT J 
FOR "'a~1 10 w2 5TEr w3 
FOh r a 0 lI..": l-j- 1 
FOh Ja 0 10 N- 1 
LET Fa:C 192/ 5)*eX(I)-XC~)t 2) 
LET K=ii*w*F8*teJ) 
IF K>'{ liiEN 290 
LET B=( 4/ 3>*E*K/5 
GOlO 410 
LET A=(S/ 3)HY/iO' 2 
IF K> E2 THE.i.J 350 
LET Al=(S/ 2)*( 1-(Y/(O' 2) 
LET AS=( 2*C*C2*'{+ 3*K)*CK-Y)' 
LET B= 4*(A+Al+A2)/S 
GOTO 410 
LEI B8=(5/ 2)*,CE2/iO. 2-(¥/iO' 2) 
LET D8=( 2*C*C 2*Y+ 3*E2).<E2-1)' 1.5)/( 
LET Fl= 2*C*' 2*£1+ 3*K).CK-El)' 1.5 
LET F2= 2.C.( 2*El+ 3*E2)*(E2-El" 1.5 
LEI F"CFI-F2)/C 15*K' 2) 
LET B= 4*CA+Ba+Da+F)/S 
LET ~=Q+G(I).HCJ)*F3*B 
NEXT J 
~EXI I 
LET U=w*Q 
PhINI '''' U 
LEI Q= 0 
NEXl w 
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Table 1 - Cont'd 

480 DAtA 85000.-.285 
481 DATA 4.00000£-03. 40000. 1.00000£- 02 .. 1.00000£+07 
-490 DATA 16, 16 
500 DAtA 6.90000E-03 
520 DATA 5.00000E-0211 .5, 5.00000lE-02 
521 DAtA 1.00000£- 0311 1.00000£- 02 .. I. OOOOOE- 03 
530 DATA 5.29954£-03. 2.77124E-02" 6.71344E-0211 .122297 
532 DATA .191061, .270991, .359198 .. .452493 
535 DATA .547506 .. • 640801 .. .729008 .. .808933 
540 DATA .87770211 .93281511 .9722<37. .9947 
550 DATA 1.35762£-02, 3. 11267£-02~ 4.75792E-02 .. 6.23144E-02 
552 DATA 7.47980E-02 .. 3.45782E-02 .. 9. 13017E-02, 9.47243£-02 
555 DAtA 9.47253£-02. 9.13017£-02,. 8.45782£-02 .. 7.47980£-02 
560 DATA 6.23144£-02 .. -4.75792£-02, 3. 11267E-02 .. 1.35762£-02 
570 DATA 5.29954E-03. 2.77124E-02 .. 6.71844E-02 .. • 122297 
572 DAtA .191061. .270991 .. • 359198. .452493 
575 DATA .547506" • 64080J" • 729008, .808938 
580 DATA .877702 .. .93281511 .972287 .. .9947 
590 DATA 1.35762£-0211 3.11267E-02 .. 4. 75792E-02, 6.23144E-02 
592 DATA 7.47980E-02, 8. 45732E- 02, 9.13017£-02" 9.47253£-02 
595 DAtA 9.47253£-02 .. 9.13017£-02, 8.45732£-02 .. 7.41980£-02 
600 DATA 6.2314i&£-02. 4.75792E-02 .. 3.11267£-02 .. 1.35762£-02 
700 END 
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APPENDIX II. COMPUTER PROGRAM FOR THE PLATE USING BELL I S LAW 

A listing of the plate program in "BASIC" is given in Table 2. The 
input parameters are shown in statements 20 - 220 with their corre~ 
sponding values 'given in the DATA statements 720 - 870. The input 
parameters in the program are given below with the symbols they 
represent: 

\3,;2 -~/J 
C = I\N K 5 = 60000 psi 

E = elastic modulus = 107 psi 

Tl = Ty = 28000 psi 

Gl = ry = .0035 

G2 = rt = .013 

G3 = r, rVAN = -.33 

S = (jy = 40000 psi 

M = number of integration points for x integral = 4 

N = number of integration points for y integral = 4 

P = number of integration points for z integral = 7 

Q = number of integration points for r integral = 5 

H = h/2a = one half the thickness of the plate divided by the 
width 

A9 = a/b = width/length 

Wl,W2,W3 = minimum, maximum, increment in W where W = wo/a 
(wo == maximum deflection) , 

X (I) ,A (I) = locations, , weights for x Gauss integration 

Y (J), B (J) = locations, weights 'for y Gauss integration 

Z (K), C (K) = locations, weights for z Bauss integration 

G(L),D(L) = locations, weights for r integration 

The nondimensional impulsefunc,tion is given by 16 and the nondimen­
sional deflection parameter wo/h by W9. The nondimensional energy 
function v/abHE is given in the program by the symbol V. 
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Table 2. Listing of Plate Program 

10 DIM XCIO),Y(10),Zel0),Gel0),AeI0),E(10),CCI0),DClO) 
20 READ C,E,ll,Cl,G2,G3,5 
25 READ toi, rll, b bi. 
30 hEAD H,A9 
40 hEAD ~1.~2.~3 
50 FOh 1"" 0 10 fIoj- I 
55 hEAD XC I) 
60 NEXT r 
65 FOh I= 0 TO M- 1 
10 READ AC I) 
75 ~.JEXl I 
ao FOR J= 0 10 ~-
35 hE.AD Y (.J) 

90 NEXT oJ 
95 FOh J= 0 TO N- 1 
100 HE.AD Be J) 
lOS NEXT J 
110 FOR K= 0 'll1 }-'- 1 
120 hEAD zeK) 
130 :~EXI K 
ILIO FOR ;\= 0 10 f'- 1 
150 hEAD COO 
160 NEXT K 
170 FOR L= 0 10 G- 1 
lao READ GCL) 
190 NEXT L 
200 FOB La 0 10 Q- 1 
210 hEAD DeL> 
220 L~EXT L 
295 LEI V= 0 
300 FOR ~=~l TO W2 STEP ~3 
310 FOh 1= 0 TO M- 1 
320 FOR';= 0 10 N- 1 
350 LET XI= 3.14159*e 2*xeI)- 1) 
360 LET Vl= 3.14159*' 2*YCoJ)- 1) 
370 LET Fl= .25*e-6.28319*SINCXl)*C l+COSCYl» 
380 LET F2= .2S*C-39.4784*coseXl».C I+C0S(Yl)~ 
390 LET F3= .2S*< l+coseXl»*(-6.23319*SINCYl») 
400 LEI F4= .25*< 1+COseX1»*C-39.4734*COS<Yl» 
410 LET F5= .25*e-6.23319*SINeXl».e-6.2B319*SINCYl» 
415 FOR K= 0 10 ~- 1 
420 LE.I El= .5*<1,/' 2>*<Flt 2)-ZOD*w*F2*H 
430 LET E2= .5*Cw' 2)*CA9' 2>*CF3' 2)-ZeK)*H*W*A9*F4 
440 LET E3=W*~*A9*Fl*F3- 2*ZCK>*H*~*A9*F5 
4S0 LET G9= 1.41399*SQh<CEl' 2)+(E21 2)+(£1*£2)+ .25*(£31 2» 
460 FOR L= 0 TO Q- 1 
470 LEt C=C9*(CL) 
480 1 F G> Gl THE:.J 505 
490 LET T= C 
500 GOTO 540 
505 IF G>G2 THEN 530 
510 LET l=Cll/E>+CC/E).SQRCG-Gl) 
520 GOTCI 540 
530 LET 1=CC/E>*SQRCG-C3) 
540 LET V=V+T*C9*AC:).BCJ).CCH)*DCL) 
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550 
560 
570 
580 
590 
600 
700 
710 
715 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
900 

Table 2 - Cont'd 

NExt L 
NEXT K 
NEXt .; 
NExt I 
LEt 16- .e5*( l/CA9* e*a)t2)*CE/S).li 
LET W9- .5*w/H 
PRINT 16,~9 
LET V. 0 
NEXT ~ 
DAtA 85000, 1.00000£+07, 35000, 5.00000E-03, 1~30000£-02~-.33, 40000 
DATA 4, 4, 7, 5 
DAtA 4.00000E-02, .59 
DATA 8.00000E-02, .0, a.00000£-02 
DAlA 6.9431aE-02, .330009, .66999, .93056a 
DAtA .173927, .326072, .326072, .173927 
DATA 6.94318£-02, .330009, .66999, .930568 
DATA .173927, .326072, .326072, .173927 
DAtA -.949108,-.741531,-.405a45, 0 
DAtA .405845" .741531, .949108 
DAtA .129,431h .279'705, .33133, .417959 
DATA .38183, .279705, .129434 
DATA 4.69100E-02, .230765, .5 
DAlA .769234, .95309 
DATA .118463, .239314, .284444 
DATA '.2393'14, .11a463 
END 
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